
Overnight Consolidation and Retention of Implicit and Explicit Knowledge of Incidentally Learned Auditory Categories Yafit Gabay¹ Avi Karni² and Lori L. Holt³

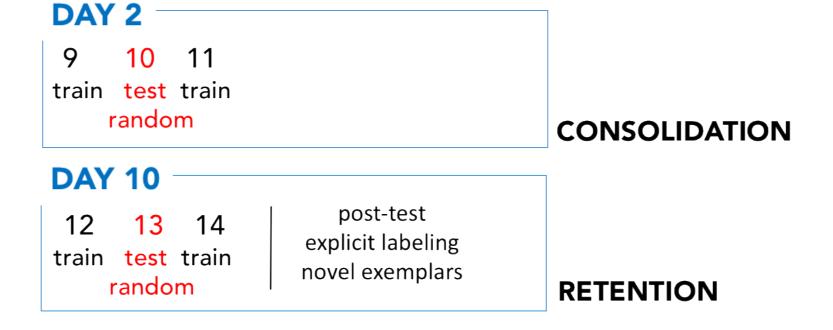
Edmond J. Safra Brain Research Center for the Study of Learning Disabilities מרכז אדמונד י. ספרא לחקר המוח בלקויות למידה مركز إدموند ج. سفرا لبحوث الدماغ في العسر التعليمي

¹ Special Education Department and the Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel, ygabay@edu.Haifa.ac.il ²Sagol Department of Neurobiology and Learning Disabilities Department, University of Haifa, Haifa, Israel, avi.karni@gmail.com ³ Psychology Department and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA, loriholt@cmu.edu

INTRODUCTION

- The mechanisms by which phonetic categories are acquired are poorly understood.
- Examining acquisition of nonspeech auditory

DAY 112345678train train train train train train train test train
randomCONLINE
LEARNING


APPROACH

Training Blocks involve a consistent category-location relationship.

Test Blocks break this relationship.

categories illuminates the learning mechanisms available to phonetic category learning.

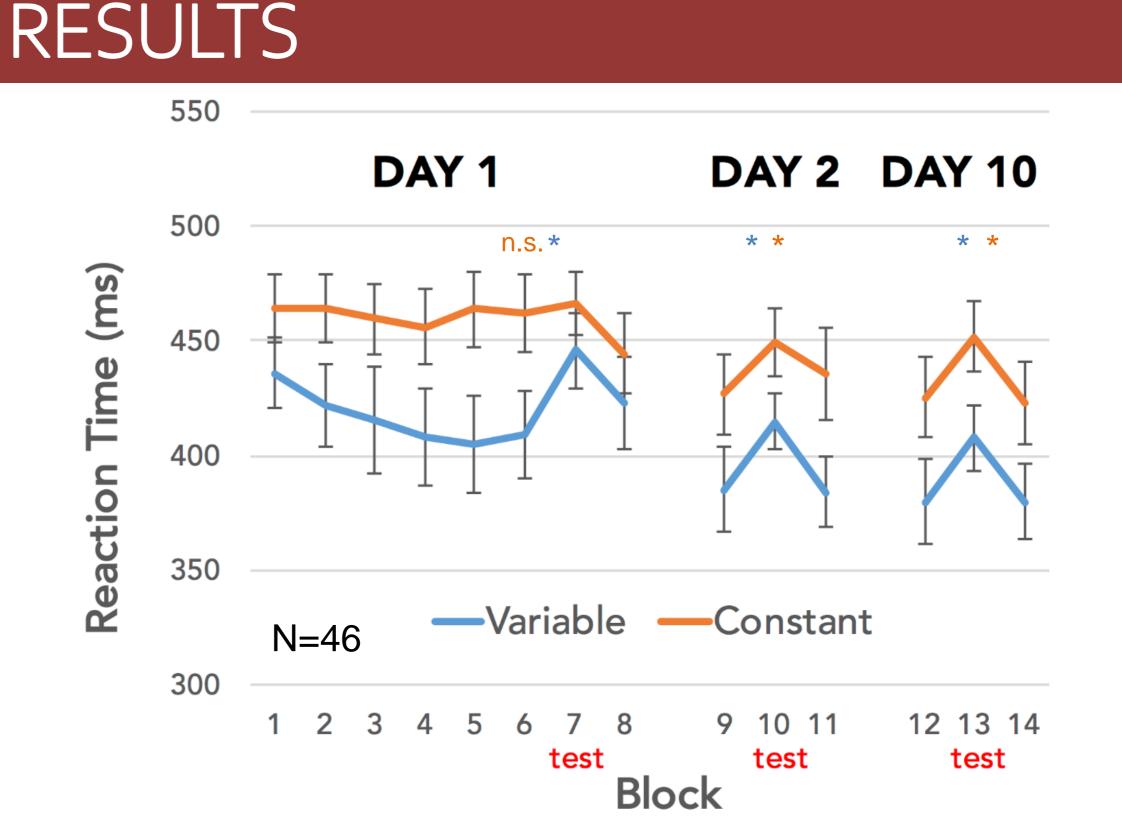
- Most previous work has examine learning across explicit tasks in which listeners are aware of categories, make explicit decisions, and receive a corrective feedback [e.g., 2-3]).
- However, category learning including phonetic category learning – often occurs under conditions in which listeners are actively engaged in environments in which categories are associated with rich, multimodal cues and behaviorally-relevant outcomes. [e.g., 3-4]

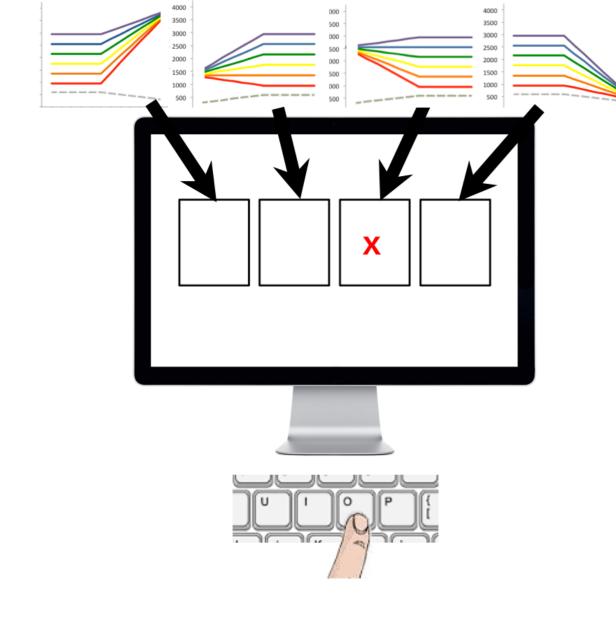
Reaction Time Cost $(RT_{test} - RT_{train})$ is a covert measure of category learning.

Explicit Labeling Task (which box will the X appear?, with no X) is an overt measure of category learning.

Two Training Types

- Constant exemplar
- Variable exemplar


THE 'SMART' TASK


Our prior research established the The Systematic Multimodal Association Reaction Time (SMART) paradigm to investigate this *incidental auditory category learning*. [4]

COVERT MEASURE: RT Cost

Day 1: ONLINE LEARNING Significant only for the

VARIABLE condition

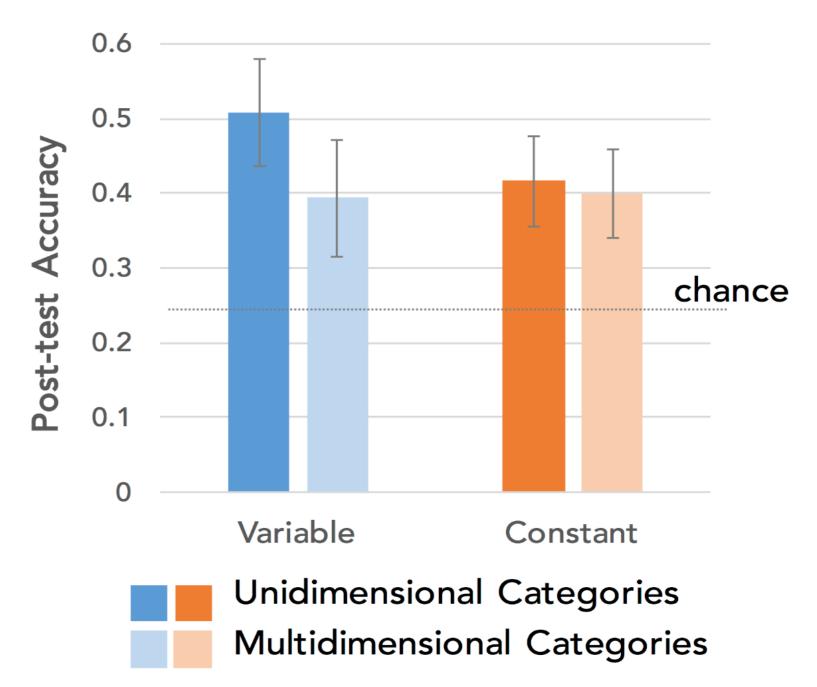
The SMART Task

A simple visual detection task. Indicate the location of the 'X' as quickly and as accurately as possible.

Day 2: CONSOLIDATION

Evidence of learning for CONSTANT only after consolidation period.

Day 10: RETENTION


Learning retained for VARIABLE and CONSTANT at Day 10.

OVERT MEASURE: Explicit Labeling

Day 10: RETENTION

EXPLICIT POSTTEST CATEGORIZATION

Significant for multidimensional and unidimensional categories.

Five sounds precede the visual target. Unknown to participants these sounds are drawn from one of four categories, each associated with a particular target location.

Sound categories predict the upcoming location of the visual target.

RESEARCHAIM

CONCLUSIONS

- Here, we examine the relationship between category learning within a session (online, fast learning) in relation to consolidation (offline, slow learning) and retention of incidental auditory category learning.
- We do so in the context of manipulating variability of category exemplars in training because prior work [4] demonstrated more robust learning with within-trial variability.
- Offline' processes resulting in performance gains can be triggered for incidental auditory experience associated with, but not necessary for, a visuomotor task.
- Experiencing variable exemplars tied to task-driven behavior can enhance incidental auditory category learning.
- Learning may be present even if not behaviorally stable in online session (offline gains for CONSTANT condition)
- Incidentally learned auditory categories are robust across modest retention intervals.

Bibliography

[1] Holt, L. L., & Lotto, A. J. (2006). Cue weighting in auditory categorization: Implications for first and second language acquisition). The Journal of the Acoustical Society of America, 119(5), 3059-3071.
 [2] Mirman, D., Holt, L. L., & McClelland, J. L. (2004). Categorization and discrimination of nonspeech sounds: Differences between steady-state and rapidly-changing acoustic cues. The Journal of the Acoustical Society of America, 116(2), 1198-1207

[3] Lim, S.J-., Fiez, J. A., & Holt, L. L. (2019). Role of the striatum in learning speech categories. Proceedings of the National Academy of Sciences, 116, 4671-4680.
[4] Gabay, Y., Dick, F. K., Zevin, J. D., & Holt, L. L. (2015). Incidental Auditory Category Learning. Journal of experimental psychology. Human perception and performance, 41(4), 1124
[5] Dudai, Y., Karni, A., & Born, J. (2015). The consolidation and transformation of memory. Neuron, 88(1), 20-32.